
Restrictions on spontaneous symmetry breaking
in gauge theories with massive fermions

Szilard Farkas a)

Vafa and Witten have shown that massive fermions can hinder a global
continuous symmetry to be spontaneously broken.1 The main purpose of
this paper is to present their proof. However, we do not follow the logic of
their paper. The proof depends on properties of the Goldstone boson and
the Dirac operator. These properties are not only technicalities in the proof,
but they are interesting in their own right. That is why we summarize them
separately, and then complete the proof of the theorem. To make this presen-
tation self-contained we start it with a review on the basics of spontaneous
symmetry breaking.

I. ASPECTS OF SPONTANEOUS SYMMETRY BREAKING

A. Effective action and its symmetries

The vacuum-vacuum amplitude of a quantum field theory with action I[φ] in
the presence of a set of classical currents Jr coupled to the fields φr is given by2

Z[J] B 〈vac, out|vac, in〉J B
∫

∏

s,y

dφs(y)eiI[φ]+i
∫

d4x φr(x)Jr (x)+ε terms, (1)

where φr can live in any representation of the Lorentz group, and can be even
fermionic. If φr is fermionic, then Jr is also fermionic in order to get a bosonic
action, and in this case we have to keep track of the order of the fields in the
functional derivatives. δL and δR will indicate that before performing the differen-
tiation we arrange the field with respect to which we are differentiating to the left
or to the right, respectively. The ε terms just have the effect of putting the correct
iε in the denominators of all propagators. From now on we omit these terms. In
terms of the sum of all connected vacuum amplitudes, iW[J] (Z[J] = exp(iW[J])),
the vacuum expectation value of the operator Φr(x) in the presence of the current
J (J = (Jr)r=1,...,N, N is the number of the various fields):

φr
J(x) B

〈vac, out|Φr(x)|vac, in〉J
〈vac, out|vac, in〉J

=
δRW[J]
δJr(x)

. (2)

Now, define Jφ as the current for which φr
J has the prescribed value φr:

φr
Jφ = φ

r. (3)
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The quantum effective action is defined by

Γ[φ] B W[Jφ] −
∫

d4x φr(x)Jφr (x). (4)

Using (2)
δLΓ[φ]
δφr(x)

= −Jφr (x).

Does a classical symmetry survive quantization? Does Γ inherit the symme-
tries of I? We are primarily interested in global linear symmetries ((Mφ)n(x) =
Mnmφm(x)), so instead of deriving what symmetry conditions are generally im-
posed on Γ by the symmetries of I (known as Slavnov-Taylor identities), we can
check quickly that these symmetries are preserved by Γ. (We assume that M does
not mix bosonic and fermionic fields, so all the entries of M are ordinary num-
bers.) If I[Mφ] = I[φ], and

∏

s,y

d(M−1φ)s(y) =
∏

s,y

dφs(y), (5)

then by changing variables in (1) we can establish from (2) and (3) that

W[J] = W[M−1T
J], MφJ = φM−1T J , JMφ = M−1T

Jφ,

so from (4) we obtain
Γ[Mφ] = Γ[φ]. (6)

Actually, this argument should not be considered as a proof of the invariance
of Γ. It would be a proof if we could always define the path integral in (1). What
usually happens is that we require the invariance of Γ, and (for instance, using
the Salvnov-Taylor identities as a guide), we define (1) so that the manipulations
that led to the invariance of Γ are permissible. Sometimes this program cannot be
carried out, for example when the theory is simply nonrenormalizable, or when
any regularization of the path integral ruins the invariance of the measure ((5) does
not hold).

B. Translation invariant vacua

If the field operator Φ (Φ = (Φr)r=1,...,N) has constant expactation value φ̄ (φ̄ =
(φ̄r)r=1,...,N) over a large spacetime volume V3T , then it can be shown that

min
{

〈Ωφ̄|H|Ωφ̄〉
∣

∣

∣

∣

∣

〈Ωφ̄|Ωφ̄〉, 〈Ωφ̄|Φ|Ωφ̄〉 = φ̄

}

= −
1
T
Γ[φ̄], (7)

where H is the Hamiltonian. If Ω is a state for which 〈Ω|H|Ω〉 is an (absolute)
minimum (such an Ω is called vacuum), and 〈Ω|Φ(x)|Ω〉 = φ̄ is constant, and (6)
holds for some M, then we can see from (7) that 〈Ω|Φ|Ω〉 = 〈Ω′|Φ|Ω′〉 for a state
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Ω′ which gives 〈Ω′|Φ|Ω′〉 = Mφ̄. If Mφ̄ , φ̄, then Ω′ , Ω, so the vacuum is
degenerate. Of course, we cannot conclude that the symmetry is broken. The true
vacuum can be a linear combination of the symmetry breaking vacua.

These calculations were valid only with a finite spacetime volume regulariza-
tion. If we want to prove that spontaneous symmetry breaking really happens, we
have to leave behind this regularization. So let us suppose that we found that in
the infinite spacetime volume limit we still have degenerate vacua Ωv. Assume
that these vacua are invariant under spatial translations: P|Ωv〉 = 0 (P is the three-
momentum operator). Let us choose an orthonormal set of vacua:

〈Ωu|Ωv〉 = δuv.

Any matrix element of the product of two operators at equal times between these
states (using the translation invariance of the vacuum states):

〈Ωu|A(x)B(0)|Ωv〉 =
∑

w

〈Ωu|A(0)|Ωw〉〈Ωw|B(0)|Ωv〉 +

∫

d3p
∑

N

〈Ωu|A(0)|Np〉〈Np |B(0)|Ωv〉e
−ip·x.

(8)

(We suppressed the time variable.) |Np〉 are orthonormalized states of three-
momentum p, which together with the vacuum states span the whole physical
Hilbert space. The point of (8) is that for the single and the multiparticle states
|Np〉 the three-momentum p = 0 is the part of the continuous spectrum as opposed
to the vacuum states for which p = 0 is a discrete eigenvalue. (At this point it is
necessary to assume that the space volume is infinite, otherwise p = 0 would be a
discrete eigenvalue even for the single/multiparticle sates, and the vacuum states
would not be distingushed in this respect.) Hence it is plausible to suppose that
the expectation values in the second sum on the right hand side of (8) are smooth
enough functions of p so that we can apply (a variant of) the Riemann-Lebesgue
theorem to claim that the integral over p vanishes as |x| → ∞. Thus we have

lim
|x|→∞
〈Ωu|A(x)B(0)|Ωv〉 =

∑

w

〈Ωu|A(0)|Ωw〉〈Ωw|B(0)|Ωv〉.

For local operators [A(x), B(0)] = 0 if x , 0, so repeating the same calculation for
lim|x|→∞〈Ωu|B(0)A(x)|Ωv〉, we get that the matrices 〈ΩuA(0)Ωv〉 and 〈ΩuB(0)Ωv〉

commute with one another. It follows that there is a basis {Ω0
u} in which every

Hermitian local operator A(x) of the theory is diagonal:

〈Ω0
u|A(x)|Ω0

v〉 = δuvav.

A symmetry breaking pertubation B built out of local operators will be diagonal in
the same basis as the Hamiltonian. A general symmetry breaking operator has no
matrix element which is invariant under the symmetry transformation M, so none
of the matrix elements in the basis {Ω0

u} are invariant under M. In the presence of
the perturbation B the system will prefer a symmetry breaking state as its vacuum
state (if all the eigenvalues of the perturbed Hamiltonian are different, which is
the general case).
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C. Goldstone bosons

We restrict our attention to the spontaneous breaking of a continuous symmetry
generated by t. Such a symmetry of the action leads to the existence of a conserved
current Jµ:

∂µJµ(x) = 0. (9)

The charge that induces the associated symmetry transformation:

Q B
∫

d3x J0(x, 0), (10)

and
[Q, φn(x)] = −

∑

m

tnmφm(x). (11)

Here φn is a scalar field. (We are interested in such symmetry breaking where the
vacua are Poincaré invariant, so the symmetry breaking can be manifested only
in a scalar field’s noninvariant vacuum expectation value.) The operator relations
(9) and (11) are preserved by the the spontaneous breaking, which affects only the
physical states. The vacuum expectation value of the commutator of the current
and the scalar fields (from the translational invariance of the vacuum):

〈[Jλ(y), φn(x)]〉vac =
−i

(2π)3

∫

d4p [ρλn(p)eip·(y−x) − ρ̃λn(p)eip·(x−y)], (12)

where

ρλn(p) = (2π)3i
∑

N

〈vac|Jλ(0)|NpN 〉〈NpN |φn(0)|vac〉δ(4)(p − pN), (13)

and ρ̃λn is defined similarly with φn and Jλ exchanged. Translational invariance of
the vacuum tells us

ρλn(p) = pλρn(−p2)θ(p0), ρ̃λn(p) = pλρ̃n(−p2)θ(p0).

The factor θ(p0) appears because the matrix elements are taken between physical
states (which have positive energy). In terms of the scalar spectral function (ρn

and ρ̃n) (12) reads

〈[Jλ(y), φn(x)]〉vac =
∂

∂yλ

∫

dµ2
[

ρn(µ2)∆+(y − x; µ2) + ρ̃n(µ2)∆+(x − y; µ2)
]

,

(14)
where

∆+(z; µ2) =
1

(2π)3

∫

d4p θ(p0)δ(p2 + µ2)eip·z.

For spacelike z we have ∆+(z; µ2) = ∆+(−z; µ2), from which and (14) we get

ρn(µ2) = −ρ̃n(µ2), (15)

4



because the commutator must vanish for spacelike x− y. Differentiating (14) with
respect ot yλ, using (9) and (�y − µ

2)∆+(y − x; µ2) = 0 (if x , y), we find that for
all, even for timelike x and y (x , y)

∫

dµ2µ2ρn(µ2)
[

∆+(y − x; µ2) − ∆+(x − y, µ2)
]

= 0,

and so
µ2ρn(µ2) = 0. (16)

Setting λ = 0, x0 = y0 = t in (12), using (15),

〈[J0(y, t), φn(x, t)]〉vac =
2i

(2π)3

∫

dµ2ρn(µ2)
∫

d4p
√

p2 + µ2eip·(y−x)δ(p2 + µ2)

= iδ(3)(y − x)
∫

dµ2ρn(µ2).

Integrating over y, using (10) and (11), we obtain

−
∑

m

tnm〈φm(x)〉vac = i
∫

dµ2ρn(µ2). (17)

The solution to (16) and (17) is

ρn(µ2) = iδ(µ2)
∑

m

tnm〈φm(x)〉vac. (18)

(Note that this derivaton is valid only for constant 〈φn(x)〉vac because we used the
translation invariance of the vacuum.) In (13) when N labels multiparticle states,
it includes an integration over at least two three-momenta, so we do not get a Dirac
delta. (18) indicates the existence of a massless single particle state, which has
zero helicity because φn(0)|vac〉 is rotationally invariant, so 〈N |φn(0)|vac〉 vanishes
for any state of nonzero helicity. The virtue of this derivation is not only that it
predicts the existence of such a state when a continuous global symmetry is spon-
taneously broken, but it makes it clear that the current associated with the broken
symmetry has nonvanishing matrix element between this state and the vacuum.

D. Two-point function of currents

What can be inferred from the behavior of the two point function of Jµa about the
existence of a one particle state B for which 〈vac|Jµa |B〉 , 0? Considering that

〈Jµa (x)Jνb(0)〉vac =
∑

N

〈vac|Jµa (x)|N〉〈N |Jνb(0)|vac〉, (19)

it is useful to evaluate 〈vac|Jµa |Bs
p〉, where Bs

p is a one particle state of momentum
p and third spin component or helicity s. (〈Bs

p, B
s′
p′〉 = δ

(3)(p − p′)δss′ .) Poincaré
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invariance of the vacuum restricts the possible spin or helicity of Bs
p for which the

above-mentioned matrix element does not vanish. Generally, let us consider an
operatorO` living in the representation S of the Lorentz group, i.e., for translations
a and Lorentz transformations Λ:3

U(a)O`U(a)+ = O`(x + a), U(Λ)O`(x)U(λ)+ =
∑

¯̀

S ` ¯̀(Λ−1)O¯̀(Λx), (20)

where U is the unitary (ray) representation of the Poincaré group on the physical
Hilbert space under which Bs

p are transformed as

U(a)Bs
p = e−ia·pBs

p, U(Λ)Bs
p =

√

(Λp)0

p0

∑

s̄

D s̄s(W(Λ, p))B s̄
Λp. (21)

W(Λ, p) is the Wigner-rotation (W(Λ, p) = L(Λp)−1ΛL(p), where L(p) is a set
of Lorentz transformation such that L(p)k = p for some standard momentum k.)
Using again the Poincaré invariance of the vacuum with (20) and (21), we have

〈vac|O`|B
s
p〉 =

eip·x

√

p0
f s
` (p), (22)

where f s
`
(p) satisfies

f (Λp) = D∗(W(Λ, p)) ⊗ S (Λ) f (p). (23)

In the derivation of (23) we used the unitarity of D. Equation (23) provides a
functional equation for f which can easily be solved. Indeed, setting p = k,
Λ = L(p),

f s
` (p) = S (L(p))` ¯̀ f s

¯̀(p), (24)

which defines f (p) for every p. Of course, this definition is good (independent of
the choice of L(p)) only if

D∗(λ) ⊗ S (λ) f (k) = f (k) for any λ from the little group of k (λk = k).

Now, let O` be a Lorentz vector (as Jµa ), so S (Λ) = Λ, i.e., S is ( 1
2 ,

1
2 ). If B is

massive, then the little group is S O(3), and S is 0 ⊕ 1 reresentation of the rota-
tions. So f automatically vanishes unless the spin of B is 0 or 1. If B is massless,
then the little group is S E(2) (two dimensional Euclidean group). If D is faithful
representation of S E(2), then it is infinite dimensional (S E(2) is noncompact),
so f vanishes (S is finite dimensional). If the translations in S E(2) are trivially
represented (this is the case of all known massless particles), then S must be triv-
ial for a nonvanishing f , because any other finite dimensional representation of
the Lorentz group is faithful. The realization is that for a massless B the expec-
tation value (22) can be nonzero only if the helicity of B is zero. In both cases
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(massless and massive) f is determined up to a constant factor because the trivial
representation of the little group appears only once in D∗ ⊗ S .

Let us calculate the contribution of the one particle states Bp of mass m and
spin (helicity) zero to the two point function (19). From (24) f is simply propor-
tional to p, thus

〈vac|Jµa (x)|Bs
p〉 = ga

pµeip·x

(2π)
3
2

√

p0
,

where ga is a constant (of course it does not need to be the same for different
particle species). The contribution of a massless particle to the two-point function
(19) (Jµa is supposed to be self-adjoint):

∫

d3p〈vac|Jµa (x)|Bp〉〈Bp|J
ν
b(y)|vac〉 = −gag∗b∂

µ∂νϕ(x − y), (25)

where

ϕ(x) =
∫

d3p
(2π)3

eip·x

p0
.

Since ϕ(λx) = λ−2ϕ(x), the function ϕ is homogeneous, and this property is pre-
served by the Wick-rotation. (Later we will give an upper bound to the Euclidean
two-point function.)

II. THE DIRAC OPERATOR

A. Kato inequality

Consider the Klein Gordon operator KA = −
∑d−1
µ=0 DµDµ+m2 for a particle of mass

m and spin 0 in a given background gauge field A, where Dµ = ∂µ − igtaAµ
a. (We

use the notation Aµ = Aµ
ata and Fµν = Fµν

a ta.) Let ∆A
+(x, y; m2) be the propagator

of KA. Kato’s inequality asserts that ∆A
+ is bounded by the free propagator if the

spacetime metric is Euclidean:

‖ ∆A
+(x, y; m2) ‖6 |∆A=0

+ (x, y; m2)|,

where ‖ · ‖ is the usual matrix norm (‖A ‖= min‖x‖=1 ‖Ax ‖). The proof is based on
the proper time path integral representation of the propagator:

∆A
+(x,y; m2) = 〈x|(KA)−1|y〉 =

1
2

∫ ∞

0
dT 〈x|e−

1
2 T KA
|y〉

=
1
2

∫ ∞

0
dT

∫ ξ(T )=y

ξ(0)=x
dξµ(t)e−

1
2

∫ T
0 dt dξµ

dt
dξµ
dt e−

1
2 m2T T ei

∫ T
0 Aµ(ξ(t)) dξµ (t)

dt dt.

(26)

T means time ordering. In the last equality we used that (1/2)KA can be con-
sidered as a Hamiltonian in d + 1 dimensional spacetime, so exp(−(1/2)T K A) is
nothing but the Wick-rotated time evolution operator, and we wrote it as a path
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integral over all possible paths with the weight function exp(−S ), where S is the
classical Euclidean action. Apart from the last factor the integrand is positive (the
spacetime is Euclidean), so

‖ ∆A
+(x, y; m2) ‖6 |∆A=0

+ (x, y; m2)|max
ξ
‖ T ei

∫ T
0 Aµ(ξ(t)) dξµ(t)

dt dt ‖ .

The proof is completed because T exp(i
∫ T

0
Aµ(ξ(t)) dξµ(t)

dt dt) is unitary, so its norm
is 1 for any path ξ. The above argument fails for a particle of spin 1/2. In this

case we have an extra factor in (26): T e(1/2)
∫ T

0 σµνFµν(ξ(t))dt, whereσµν = (i/4)[γµ, γν]
are the Hermitian spin matrices (the spacetime is Euclidean). This matrix is not
unitary, its norm can be bigger than 1. Vafa and Witten proved a similar inequality
for the spin-1/2 case, but we postpone its presentation because it uses the causality
of the Dirac equation, and we would rather make some comments on this issue
beforhand.

B. Causality of the Dirac equation

A differential equation is hyperbolic if it has a retarded Green function (propaga-
tor) (i.e. a Green function satisfying G(x, y) = 0 if x0 < y0.) A hyperbolic equa-
tion on a Minkowskian spacetime is causal if its propagator vanishes for spacelike
x − y. The free Klein-Gordon and Dirac equations are causal. From Kato’s in-
equality this holds for the Klein-Gordon equation in the presence of a gauge field.
Zwanziger gives a (nonrigorous) proof for the causality of the Diarc eqaution in
the presence of an Abelian gauge (electromagnetic) field.4 His method cannot
be straightforwardly generalized to a non-Abelian background (replacing the ex-
ponentials with path ordered exponentials does not work, and the gauge invariant
equation he obtains is no longer gauge invariant in the non-Abelian case, however,
the latter is irrelevant in the proof of the causality). Since we have not found any
argument to confirm it, we simply accept that the Dirac equation is causal even if
the background is non-Abelian because we cannot do anything better.

C. Vafa-Witten inequality

Let |α〉 and |β〉 be two states of disjoint support separated by a minimum distance
R. Define the smeared Dirac propagator in the background gauge field A:

S A
+(α, β; m) B 〈α|(D� + m)−1|β〉 =

∫ ∞

0
dτe−mτ〈α|e−iτ(−iD�) |β〉. (27)

We have been thinking of iD� as a Euclidean Dirac operator in four dimensions, but
it can be regarded as a Dirac Hamiltonian in 4+1 dimensional Minkowskian space-
time. Therefore, in (27) the factor exp(−iτ(−iD�)) is the evolution operator for a
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real time τ in 4 + 1 dimensions. Causality implies that the state exp(−iτ(−iD�))|β〉
can have an overlap with |α〉 only after a time τ = R. Hence we can write

S A
+(α, β; m) =

∫ ∞

R
dτe−mτ〈α|e−iτ(−iD�) |β〉.

Using Schwartz inequality for |α〉 and exp(−iτ(−iD�))|β〉, by unitarity of
exp(−iτ(−iD�)) (the four dimensional Euclidean iD� is Hermitian) we have

S A
+(α, β; m) 6

e−mR

R

√

〈α|α〉
√

〈β|β〉. (28)

III. VAFA-WITTEN THEOREM

Theorem. In a gauge theory with only gauge bosons and fermions, and with
θ = 0, a global non-Abelian symmetry cannot be spontaneously broken if it acts
nontrivially only on massive fermions.

Proof. Let us denote the symmetry group in question with G. Consider the Eu-
clidean two point function 〈Jµa (x)Jνb(y)〉A of the current associated with G in a given
background gauge field A. The current takes the form of Jµa = q̄γµτaq, where q
is a fermion multiplet, and τa is a generator of the representation of G. In one
multiplet the fermions have equal mass m. Imagine what the perturbative expan-
sion (in coordinate space) for 〈Jµa (x)Jνb(y)〉A might look like. First we can have two
fermion loops. Each fermion loop includes one of the vertices γµτa at x and γντb

at y. Second we can have only one fermion loop containing both. The loops have
some external gauge boson legs. By the assumption we made on the gauge fields
(they are G-singlet) a fermion line has the same G-flavor at both ends, hence in
the contribution of a fermion loop diagram we have a trace over the G-flavors. It
implies that we can exclude the first case because if the loop contains only one τa,
then Tr τa = 0.a) But what we have in the sum of the diagrams of the second kind
is nothing but two fermion propagators, one from x to y, and another from y to x.
Then we can write

〈Jµa (x)Jνb(y)〉A = −Tr
[

γµτaS A
+(x, y; m)γντbS A

+(y, x; m)
]

, (29)

where S A
+(x, y; m) is the fermion propagator from x to y in the background gauge

field A.
We have no upper bound for S A

+(x, y; m) but we have one for the smeared
propagator S A

+(α, β; m). Since we want to apply (28), let us smear the current by
introducing smeared fermion operators:

q∆(x) =
64
∆6

∫

‖x−x′‖<∆
d4x′M(x, x′)q(x′), (30)

a)Indeed, all the generators of the representation of a semi-simple compact group are traceless
because taking τ̃ =

∫

G
dµ(g)D(g)τD(g)−1 (where µ is the invariant measure), Tr τ̃ = Tr τ , 0, so τ̃

is nonzero, and D(g) τ̃D(g)−1 = τ̃ for any g ∈ G in contradiction to the semi-simplicity of G.
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where M(x, x′) was introduced in order to make q∆ gauge-covariant:

M(x, x′) =
〈

x
∣

∣

∣

∣

∣

(

−DµDµ +
1
∆2

)−3 ∣

∣

∣

∣

∣

x′
〉

=
1
2

∫ ∞

0
dTT 2

〈

x
∣

∣

∣

∣

∣

e−T
(

−DµDµ+ 1
∆2

)

∣

∣

∣

∣

∣

x′
〉

. (31)

It is clear from the last expression in (31) that under a gauge transformation U the
matrix M changes as U(x)M(x, x′)U(x′), so the covariance of q∆ is guaranteed.
Moreover, using the same argument as in the proof of Kato’s equality for the
last expression in (31), we find that ‖ 〈x|(−DµDµ + 1/∆2)−3|x′〉 ‖6 |〈x|(−∂µ∂µ +
1/∆2)−3|x′〉|. For the free Klein Gordon operator 〈x|(KA=0)−3|x′〉 is finite for any x
and x′ (that is why we had to use the negative third (or more) power of the Klein
Gordon operator), and it is bounded by 1/32π2m2, so this is true for M(x, x′), too.
The reason why we demand the gauge invariance of q∆ is that later we will perform
the path integral over the gauge fields in order to get the two-point function of the
smeared current Jµa∆ built out of the smeared fermion field q∆, so Jµa∆ must be
gauge invariant because the path integral is defined only for such operators (see
Faddeev Popov method). The normalization in (31) is chosen so that in the limit
of small ∆ the smeared fermion operator q∆(x) becomes the fermion operator q(x)
averaged over a ball of center x and radius ∆.

Define

|x∆〉 =
64
∆6

∫

‖x−x′‖<∆
M(x, x′)|x′〉 (32)

From (32) and the upper bound for M(x, x′) we can see that ‖ x∆ ‖2 and ‖ y∆ ‖2 are
bounded by ∆−4. The least distance from |x∆〉 to |y∆〉 is R =‖ x − y ‖ −2∆. Thus
(28) tells us

‖ S A
+(x∆, y∆; m) ‖6 e−m‖x−y‖ e

2m∆

m∆4
. (33)

If we want to get the two point function of the whole quantum field theory,
we have to integrate over the gauge fields A as well. In Euclidean spacetime the
vacuum expectation value of a gauge invariant operator O(q) built out of only
fermion fields q is

〈O(q)〉vac =
1
Z

∫

dq(x)
∫

dAµ
a(x) O(q) e−S

=
1
Z

∫

dAµ
a(x) 〈O(q)〉A det(D� + m) e

− 1
2g2

∫

d4x Tr FµνFµν

,

(34)

where det(D� + m) =
∫

dq(x)e−S A
ferm =

∫

dq(x) exp(−q̄(D� + m)q), which arises
because 〈O(q)〉A =

∫

dq(x)O(q)e−S A
ferm/

∫

dq(x)e−S A
ferm . The nonzero eigenvalues

of iD� (in a given background gauge field) are paired in the following way: if
iD�ψ = λψ, then iD�γ5ψ = −λγ5ψ. So if λ is an eigenvalue, −λ is also. Thus the
fermion determinant is positive:

det(D� + m) =
∏

λ

(m − iλ) = mz
∏

λ

(m2 + λ2) > 0,
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where z is the number of the zero modes. In (34) 〈O(q)〉A is integrated with respect
to the measure dµ = dAµ

a(x) det(D� + m) exp(−1/2g2
∫

d4x Tr FµνFµν). Since the
measure dµ is positive, if we know that |〈O(q)〉A| 6 N with some constant N that
is independent of A, then the vaccum expectation value of O(q) obeys the same
inequality:

|〈O(q)〉vac =

∣

∣

∣

∣

∣

1
Z

∫

dµ(x) 〈O(q)〉A

∣

∣

∣

∣

∣

6 N. (35)

From (29) and (33) we have a background field independent upper bound for
the two-point function of the gauge invariant smeared current Jµ

∆a B q̄∆γµτaq∆ in
the presence of a given gauge field:

〈Jµa (x)Jνb(y)〉A 6 Cµν

abe−2m‖x−y‖ e4m∆

m2∆8
.

(Cµν

ab is a constant, irrelevant in our argument.) By the argument that led to (35) we
conclude that the same upper bound holds for the two-point function of the current
(i.e. the vacuum expectation value of the product of two current operators), which
we get by performing the path integral with respect to the gauge fields:

〈Jµa (x)Jνb(y)〉vac 6 Cµν

abe−2m‖x−y‖ e4m∆

m2∆8
. (36)

Assume that the symmetry G is spontaneosly broken. It is plausible to suppose
that q̄τaq plays the role of φn in Sec.I.C. Consequently, we have a Goldstone boson
which together with the vacuum gives nonzero Jµa matrix element, and we found in
Sec.I.D that in the presence of a massless particle the two-point function acquires
a term that is homogeneous function of the separation x−y (see eq. (25)). We have
to smear (25) in order to compare it with (36). But it is impossible that smearing
a homogeneous function as in (25) would result in an exponential decay as in (36)
for every ∆. �

Finally, we summarize what would happen if we relaxed some conditions in
the theorem.

• If the symmetry is Abelian, then the whole argument that led to (25) (with
nonzero g) breaks down because we have no candidate for φn to start the
proof in Sec.I.C. (q̄q is neutral, it commutes with the conserved charge.)

• If we allow θ , 0, then the complex factor exp((iθ/16π2)
∫

d4x Tr FµνFµν)
in the path integral over the gauge field invalidates (35).

• If the fermions are massless, then (33) blows up. This is exactly what we
expect because we know (for instance, from the Atiyah-Singer index the-
orem) that the massless Dirac operator iD� has zero egienvalues for some
background field, so we cannot give a background independent upper bound
to the massless Dirac propagator.
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• Let us include other fields, say scalars. As long as the scalars do not have
Yukawa couplings to the fermions the analysis is valid, since the Euclidean
action for scalars with renormalizable self-interactions and gauge couplings
only is real (so (35) still holds). With Yukawa couplings the Dirac operator
has the form D� + m + gφ. There are background φ fields such that m + gφ
is not bounded below, and then (33) fails. This can be circumvented by
pseudoscalar Yukawa couplings, when the Dirac operator is D� +m + iγ5gφ.
The problem is that the fermion determinant is not real, and (35) does not
hold. Reality and positivity can be rescued, if the fermions in the multiplet
can be paired in the following way: one couples to iγ5φ and the other to
−iγ5φ. In that case the positivity of the determinant can be proved by an
argument similar to one we used earlier.

• If the gauge fields transform nontrivially under the symmetry in question,
then the argument that led to the conclusion that the two point function in a
given background field is basically the product of two fermion propagators
(see eq. (29)) fails.
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